VOL. 9, NO. 1, JANUARY 1972

Engineering Notes

ENGINEERING NOTES are short manuscripts describing new developments or important results of a preliminary nature. These Notes cannot exceed 6 manuscript pages
and 3 figures; a page of text may be substituted for a figure and vice versa. After informal review by the editors, they may be published within a few months of the date of
receipt. Style requirements are the same as for regular contributions (see inside back cover).

J. AIRCRAFT 91

Spatial Decay in the Response of
Damped Periodic Beam

R. Varcarmis*
Columbia University, N. Y.
K. Dort
Mitsubishi Heavy Industries, Ltd., Tokyo, Japan
Y. K. Ling
University of Illinois, Urbana, 111

Y a periodic structure we refer to the type of construction

frequently used in aerospace and marine engineering
where the interior of a structure forms an array of connected
identical units. The fuselage of a flight vehicle and the hull
of a submarine are typical examples. Such structures are
often large, and it may not be economically feasible to con-
duct experimental tests on the prototypes. Thus, earlier
experiments on aircraft panel response to jet or boundary-
layer noise, for example, were performed on single isolated
panels.

It has been pointed out by Lin'-2 that single panels are not
representative of a group of interconnected panels. In
particular, the response spectral density of an isolated panel
to noise excitation is characterized by well-separated sharp
peaks whereas the response spectrum of a multipanel system
under the same excitation shows groups of peaks closely
clustered within separate frequency bands. This peak
grouping is not unique for periodic structures. The same
phenomenon is observed when the panel size varies from one
span to another.

Although the need for a multipanel specimen for laboratory
testing is now generally recognized, the choice of specimen
size remains an arbitrary one. The fundamental question,
“How many panels must be included in a specimen in order
that the specimen is dynamically representative of an actual
structure?””, has not been answered. The present study was
motivated by the need for a rational answer to this question.

It is well known that response of a structure to an impulsive
excitation decays with time since damping is always present
in an actual structure. However, damping gives rise not only
to temporal decay but also to spatial decay in the response.
Thus, if excitation is applied within a certain panel on an
aircraft fuselage, the effect of excitation will be felt strongly
by the immediate adjacent panels, and this effect will be felt
less and less for more distant panels. If the effect of an
excitation is negligible at N panels away in one direction and
M panels away in another direction, then in view of the
reciprocal theorem of a linear system, it will be adequate to
use a specimen consisting of 2N X 2M panels for the study
of dynamic behavior of a panel near the center of the struc-
ture.

As an initial step we choose an infinitely long Euler-
Bernoulli beam periodically supported by elastic springs for
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Fig. 1 Periodic beam on elastic supports.

the present study. The objective is to determine the distance,
in terms of number of periodic units, required for a steady-
state sinusoidal response to decay to a negligible amplitude.
The results should be a valuable guide for the future similar
study of two-dimensional panel arrays.

As shown in Fig. 1 the beam is prismatic, made of homo-
geneous and isotropic material, and supported at uniform
intervals by identical elastic springs. A tuned damper of the
type investigated by Jones, Henderson and Bruns? is attached
to each span and is identically positioned relative to the
supports in each span. Let sinusoidal excitations such as
Pe'*t and Qe be located between supports m— 1 and m.
The steady-state response at different locations on the struc-
ture can be simply related by use of transfer matrices*—%. We
shall be concerned only with response at the points of demarca-
tion for neighboring periodic units (to be called periodic
stations). Specifically, if excitations are not present between
two periodic stations # and #+ 1, then the response state
vectors at these two stations are related by *-¢

Zn+1:TZn (l)

where, in the present case, Z is a four-dimensional state
vector whose components are the complex amplitudes of
deflection, slope, moment and shear, denoted by 3, ¢, M, V,
and where T'is the transfer matrix associated with the structu-
ral element, connecting stations » and »+ 1. For the con-
struction of this matrix the reader is referred to Ref. 6.

We note some interesting properties of a transfer matrixé:
1) the determinant of a transfer matrix is unity, 2) inversion
can be accomplished by rearranging the elements and changing
some of their signs, 3) the eigenvalues are in reciprocal pairs,
4) if the structural element represented by a transfer matrix is
symmetrical, then by a suitable choice of the order and sign
convention for the components of state vector Z, the transfer
matrix can be made symmetrical about its cross diagonal.

Since the beam is infinitely long the relation between
response state vectors can also be expressed as follows:

Zn +1 = ewZn (2)§

When 6 is purely real Eq. (2) simply states that the state
vector at n + 1 lags (or leads) the state vector at » by a phase
angle 0. However, purely real § values are possible only in
the case of undamped free wave motion and at a frequency
falling within one of the natural frequency bands®®,
Comparing Egs. (1) and (2) it is clear that ¢'® is an eigen-
value of 7. This suggests a simple way to calculate 6§ and
to study its propertics. Recall that eigenvalues of T are

§ Mead”>® has used a propagation constant p instead of i in his
work.
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reciprocal pairs. Thus, denoting these eigenvalues by exp
(%i0,) and exp(*if,), we can show that®

2 _ £
:&i(ﬂ_m 1) 3)
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cos 8,

where K; and K, are related to elements #;; of the transfer
matrix T as

4
K, = %Z tii
i=1
4 4
K, = :‘f; j; (taty; — tistio) C))
i#)

Since we are only interested in damped structures, neither 8,
nor 6, can be purely real at any frequency. Without loss of
generality let the imaginary parts of 6, and 8, be both positive.
Then each reciprocal pair, §; and —46;, characterize the same
type of wave motion: 8; associated with a right-going wave
and —0; associated with a left-going wave. Under an
excitation between supports m — 1 and m, as illustrated in
Fig. 1, response to the right of m is superposition of two
right-going waves, and response to the left of m — 1 is that of
two left-going waves, and attenuation of response can be
determined from the imaginary parts of 8, and 8,.

Let the excitations be located left of periodic station # and
let the state vector at station n be separated into

Z,=20+ 2,2 ®)

where the two component vectors are associated with 8, and
8., respectively. Thus, considering both types of wave, we
have, from Eq. (2)

Zn+M —_ iMe;Zn(l) + eiMezzn(z) (6)
We define a spatial decay ratio as follows:

N Zo e U o
"M)=" 7 T Z®

0

where || || denotes a simple norm of a vector; that is, the sum of
the absolute values of its components. In the present case
IZll=|8|4+|é|+ | M|+ |¥V]. The exact value of r(M) as
given in Eq. (7) is difficult to evaluate. It depends on the
relative contribution of the two types of waves which, in
turn, depends on the exact location of an excitation. How-
ever, it is simple to find an upper bound to Eq. (7). Write

Z.®|| + expl(— ¢ + pIMNNZLD |
1Z90 + 1Z. 9|

where ¢, = min(y;, ¥2), 1 = max(y, ) and the superscripts
(s) and (£) denote the vectors associated with ¢, and i,
respectively. An upper bound of (M) may then be obtained
from

r(M) = exp(— M) |

®

r(M) < exp(— M) €))
The equality sign corresponds to the case ¥, =, .

Numerical Examples and Discussion

Numerical examples were worked out using a criterion for
negligible response r(M) <0.01. The beam chosen for the
calculation is made of aluminum (Young’s modulus = 10.5 X
108 psi, weight 0.101 1b/in.3, and is 0.04 in. thick and 1 in.
wide. The elastic supports are 8.2 in. apart; each is character-
ized by a translational spring constant k, = 1100 Ib/in. and a
rotational spring .constant k, =180 in.-lb/rad. Structural
damping of the beam material and the elastic supports is
accounted for by muiltiplying complex factors (1 -+ igsa),
(1 +1ig4es) and (1 + igees) to E, k, and k., respectively. The
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Fig. 2 Number of spans from excitation for negligible response
9 =0.2, gsa = 0.02, gres = 0.05, gges = 0.05, w,/w,=2.94.

damper unit attached at every mid-span is tuned at frequency
w, and each has a loss factor g == 0.2.

Typical results are shown in Figs. 2 and 3 where the abscissa
is the excitation frequency normalized to the fundamental
natural frequency w,(340 rad/sec) of a single span beam simply
supported at both ends and the ordinate M is the smallest
integer M satisfying the above criterion for negligible re-
sponse. Bands of natural frequencies at which free wave
propagation in the case of undamped systems may exist are
also marked in the figures. .It is seen that the M, value is
highly dependent on the excitation frequency and that the
peak regions for M, coincide with the natural frequency
bands. One important effect of the tune dampers is the
suppression of the M, value (increasing the spatial decay rate
of the response) near the tuning frequency. As can be seen
by a comparison of Figs. 2 and 3, the first peak region is
greatly reduced when dampers are tuned at a frequency near
the middle of that region.

Although the calculations reported above pertain to a simple
Euler-Bernoulli beam, some conclusions drawn from the
present study are believed to apply to all periodic structures,
including two-dimensional array of skin-stiffener panels.
Firstly, since the rate of spatial decay in the response depends
on the excitation frequency the size of a smaller specimen for
laboratory testing is also determined by this frequency, or,
in the case of noise loading, by the shapes of spectral density
and cross-spectral density of the forcing field. When the
number of spans (2M;) required of a specimen is near or
beyond that of the prototype, the need for using the entire
structure in the experimental study is indicated. Secondly,
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Fig. 3 Number of spans from excitation for negligible response
Fsa = 0.02, gres = 0.05, gaes = 0.05, w,/w, = 2.06.
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we have demonstrated the usefulness of the type of dampers
investigated in Ref. 3 for vibration control of periodic struc-
tures. Such dampers may be tuned to suit the spectral shape
of a noise environment.
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A Simplified Model for
Aircraft Steering Dynamics

CARL GRUBIN*
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HIS Note describes a simplified dynamical model of an

aircraft that is useful for combat simulations involving
aircraft steering. Both translational and rotational equations
are developed. The former are obtained by expanding the
equations of motion along aircraft flight path axes. The
latter, however, are obtained only from geometrical con-
siderations and transfer functions for the lift magnitude and lift
bank-angle. In this sense, the equations are simplified.
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Fig. 1 Aircraft
velocity vector.

Analysis

Flat Earth assumptions are made so that a local vertical,
Earth-fixed reference frame is considered an inertial frame.
The frame axes are X, Y, Z, where XY are in the local hori-
zontal plane and Z is down along local vertical. Aircraft
velocity vector V is expressed in terms of its magnitude ¥V, and
azimuth and elevation flight-path angles o, v respectively
(Fig. 1). Angle o is measured from the X axis to the pro-
jection of V in the XY plane, v is the flight-path angle of V
above the XY plane. Introduce axes &, 7, { where £ lies
along V, 7 is perpendicular to £ and lies in the XY plane, and
{ completes a right-handed system. (If V lies along +.2,
then 7, { are ill-defined. This special case is examined in the
Appendix).

The forces which act on the aircraft are lift L, drag D, thrust
T and gravity W (Fig. 2). L is always perpendicular to V and
so lies in the n{ plane at some angle p to the — axis. Drag

Fig. 2 Forces on aircraft.



